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A method for performing a Chapman-Enskog-like expansion of the Boltzmann equation corresponding to
granular gases is presented. A calculation of the stress tensor corresponding to a two-dimensional gas of
inelastically colliding smooth disks serves to demonstrate the method. This calculation provides an answer to
the long sought source of the normal stress differences in granular fluids. It turns out that, like in molecular
fluids, this effect is second~Burnett! order in the shear rate but, unlike in simple molecular fluids, it is a
sizeable effect; as such it can be considered as a measurable manifestation of the Burnett correction for simple
fluids. @S1063-651X~96!04210-9#

PACS number~s!: 83.10.Hh, 47.50.1d. 05.20.Dd, 51.10.1y

In recent years there has been a significant increase in the
interest in the properties of granular systems@1–6#. These
systems, which are of immense industrial importance, exhibit
a variety of unusual properties. When strongly forced~e.g.,
sheared!, granular systems can be completely fluidized; this
state is coined ‘‘rapid granular flow.’’ One of the prominent
properties of granular gases is the sizeable normal stress dif-
ferences these systems exhibit when in a sheared state
@1,7,8#. The question of the source of this effect has preoc-
cupied a number of researchers@9,10#. Some investigators
who employed kinetic theoretical methods for the study of
granular flows merely stated that their theories could not
account for this phenomenon, e.g.,@11–13#. Jenkins and
Richman@9# obtained anisotropic normal stresses by conjec-
turing a form of the single particle distribution function. An-
other theory for normal stress differences, presented in@10#,
proposes that density gradients are responsible for this phe-
nomenon. In the latter work, this effect is attributed to
~Enskog! corrections to the Boltzmann equation.

The similarity of the microscopic dynamics of rapid
granular flows to that of molecular fluids has prompted nu-
merous studies of granular systems which are based on the
kinetic theory of gases@9,11–15#. The relevance of a kinetic
approach to~at least dilute! rapid granular flows@which is
supported by molecular dynamics~MD! results and suc-
cesses of kinetic theories# can be appreciated by considering
the quasielastic limit. In this limit the energy loss~due to
inelasticity! in each collision can be small enough so that the
time scale for local equilibration~typically, a few collisions
per particle! is shorter than the time scale for energy decay
~by inelastic collisions!; consequently, one expects a near
Maxwellian ~local! distribution to develop~in quasielastic
systems!. In most previous investigations~see, however,
@13#! the single particle distribution corresponding to granu-
lar systems has not been systematically derived from the cor-
responding Boltzmann equation—instead, various moment
closures have been invoked@9,11,12,14,15#; clearly a sys-
tematic perturbative solution of the pertinent Boltzmann
equation is called for. There is however a problem in con-
structing a Chapman-Enskog~CE! expansion for a granular
system: due to the inelastic nature of the collisions the only
steady state of such systems, in the absence of external forc-
ing, is one of zero granular temperature—and the latter can-

not serve as a ‘‘zeroth order’’ in a perturbation theory at
finite granular temperatures. In this paper it is shown how
this problem can be resolved. It is known@16–18#, that the
temperatureT, of a homogeneous sheared granular system is
proportional tog2/«, whereg is the shear rate and« is a
measure of the degree of inelasticity~defined as 12e2 where
e is the coefficient of normal restitution!. Consider the
double limitg→0 and«→0 whileg2/« ~or T! is fixed. In this
limit one obtains an equilibrium system~at any predeter-
mined temperature!. On the basis of this observation it can
be shown@19# that a perturbative expansion for the solution
of the Boltzmann equation corresponding to a steady sheared
state can be constructed by employingA« as a small param-
eter and considering the shear rateg to beO~A«!. This ex-
pansion is limited to steady states alone. Below we present a
generalization of this approach, which is achieved by consid-
ering g and « to be separate~small! expansion parameters.
Consider, e.g., the Boltzmann equation for a~dilute! gas of
hard disks in a plane, whose collisions are characterized by a
single constant coefficient of normal restitution@13,20#
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In Eq. ~1!, f denotes the single particle distribution func-
tion ~in the above integral only the velocity dependence is
spelled out!, sT is the total cross section~equal to twice the
diameter of a disk!, e is the coefficient of normal restitution,
k̂ is a unit vector pointing from the center of disk 1 to that of
disk 2 at contact,v1* ,v2* andv1,v2 are the velocities of the
colliding particles before and after the collision, respectively.
The nonlinear Boltzmann collision operatorB( f , f ) is de-
fined in Eq.~1!. In the derivation below we specialize, for
simplicity, to the case of homogeneous number densityn,
and homogeneous granular temperature@21#. Denote the in-
verse ‘‘granular temperature’’ byb where b21(t)[^u2&.
The bracketŝ & denote averaging with respect tof . Next,
define a dimensionless single particle distribution functionf̄ ,
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by f[nb f̃ (Abu!, whereu is the fluctuating velocity~actual
velocity minus the average velocity at a given point!. Notice
that f̃ is a space independent function ofu, in the homoge-
neous case. In the case of a simple shear flow field,V5gyx̂,
Eq. ~1! can be written in the following nondimensional form:
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whereḃ̃[ḃ l /Ab, g̃[g lAb, ũ[Abu, l51/nsT is the mean
free path, and
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Below we omit the tilde signs, with the understanding that all
quantities are dimensionless unless otherwise specified.
Next, we specialize to the case of near-elastic colli-
sions: «!1, and small shear:g!1. Consider the expan-
sion of f and ḃ in powers of these parameters

f ~u!5 f 0~u!~11«F011gF101«2F02

1g«F111g2F201••• !, ~4!

where f 0(u)[exp~2u2!/p, and~sinceḃ vanishes in the ab-
sence ofboth inelasticity and shear!

ḃ5«ḃ011gḃ101«2ḃ021g«ḃ111g2ḃ201••• . ~5!

This two parameter expansion is a generalization of the CE
expansion for the case of rapid granular flows. The substitu-
tion of Eq. ~4! and Eq.~5! in the Boltzmann equation yields
a perturbative expansion forf in powers of« andg. At O~g!
one obtains

LF105ḃ10~12u2!12uxuy , ~6!

whereL is the standard linearized Boltzmann operator
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Equation~7! is defined withe51. The solubility condition
for Eq. ~6! requires the right-hand side~rhs! of this equation
to be orthogonal to the eigenfunctions ofL, which have van-
ishing eigenvalues, i.e., to 1,u, andu2 ~with a Maxwellian
weight function@22#!. This impliesḃ1050. The solution of
Eq. ~6! is therefore~due to the isotropy ofL! of the form
F1052F̂10(u)uxuy5F̂10(u)u

2sin2u, where ~u,u! are the
polar coordinates of the vectoru andF̂10 is a function of the
speed, which can be determined numerically@19# or ~less
accurately! by using, e.g., an expansion in Sonine polynomi-
als @22#. At O~«! one obtains

LF015ḃ01~12u2!1Q1~u!. ~8!

The functionQ1(u) is the expansion ofB~f 0 , f 0)/ f 0 to first
order in«, given by@19#:
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whereI 0 andI 1 are the zeroth and first order modified Bessel
functions, respectively. The rhs of Eq.~8! is orthogonal to 1
andu. The requirement that it is also orthogonal tou2 yields
ḃ015Ap/8. The coefficientḃ01 determines the rate of cool-
ing, due to the inelasticity of the collisions, to lowest order in
«. Notice that, unlike Eq.~6!, Eq. ~8! is specific to the CE
expansion for granular fluids. Reverting to dimensional
quantities, it follows that:

d

dt
^u2&cooling52Ap/8«nsT^u

2&3/21higher order terms.

~10!

Equation~10! is in conformity with the phenomenological
result Ṫcooling}2«nsTT

3/2, for homogeneous systems@16–
18#. Since the rhs of Eq.~8! depends onu alone, the solution
is a functionF̂01(u) of the speed which can be determined
numerically to the desired accuracy@19#. The equation at
O~g2! is
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Note that in Eq.~12!, u1* andu2* are defined withe51. It is
evident, by considering the form ofF10 and symmetry con-
siderations, thatC~F10! satisfies the solubility conditions.
The other terms on the rhs of Eq.~11! satisfy the first and
second solubility conditions. The third solubility condition
determinesḃ20 @19#: ḃ205*0

`x5e2x2F̂10(x)dx'20.8146.
The coefficientḃ20 determines, to lowest nontrivial order in
g, the heating caused by the shear. Reverting to dimensional
quantities one obtains

d

dt
^u2&heating'0.8146lg2A^u2&1higher order terms.

~13!

It can be shown@19# that the rhs of Eq.~11! is of the form
A(u)1B(u)u2cos2u1C(u)u4cos4u, hence the solution
of Eq. ~11! assumes the form:F205F̂ 20

(0)(u)
1F̂ 20

(2)(u)u2cos2u1F̂ 20
(4)(u)u4cos4u, whereF̂ 20

~0! , F̂ 20
~2! , and

F̂ 20
~4! are scalar functions ofu that can be determined numeri-

cally @19#. To lowest nontrivial order in the above perturba-
tive expansion, the steady-state condition reads:
ḃ01«1ḃ20g

250 ~our results hold, of course, for transient
dynamics—as well!. The resulting~dimensional! relation be-
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tween shear, inelasticity, and granular temperature, under
steady-state conditions, isg'0.8771A«^u2&/ l . This result is
in conformity with the mean field~qualitative! relation
T}g2/«. The contributions tof of O~g«! andO~«2! are re-
sponsible for an inelastic correction to the viscosity and to a
next order correction to the inelastic cooling rate, respec-
tively. These corrections are not considered in the present
paper. Having found the form of the functionf to first order
in « and second order ing, we can now evaluate the stress
tensort i j5^uiuj& to the same order. Sincef 0 is ~standardly!
defined in such a way that the normalization, mean velocity,
and temperature are given by its appropriate moments, it
follows that the isotropic parts of the corrections tof 0 do not
contribute to the diagonal components of the stress tensor.
Hence, the isotropic parts ofFi j ~e.g.,F̂01 andF̂ 20

~0!! do not
contribute to these components. Clearly~sinceuiuj contains
up to second harmonics inu and, as mentioned, the operator
L is isotropic!, the fourth order harmonic does not contribute
to the stress tensor as well. Consequently, only second order
harmonics, i.e., terms proportional to cos2u and sin2u, con-
tribute to the stress tensor. The components of the stress
tensor are obtained by a direct integration of the terms mul-
tiplying the above mentioned harmonics, the result being

txx5
1
21ag2, tyy5

1
22ag2, and txy5tyx5bg,

where@19#
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Sincetxx.tyy we obtain a normal stress difference. Notice
that this effect is~qualitatively! a consequence of the shear
and not of the inelasticity. Reverting to dimensional quanti-
ties it follows that:

txx
tyy

'
110.679g2l 2/^u2&
120.679g2l 2/^u2&

. ~14!

Equation~14! is formally identical to the result one could
have obtained by substituting the two-dimensional~2D! Bur-
nett correction~the 3D Burnett formulas are given, e.g., in
@22#! for the normal stresses. This formal resemblance is
somewhat misleading since:~i! the CE expansion of the
Boltzmann equation corresponding to a granular gas isa
priori undefined, as explained in the above.~ii ! The «→0
limit is not a trivial limit, as one can realize by considering
the fact that the only steady state of a sheared elastically
colliding system~of infinite extent! is one of infinite tem-
perature due to the continual heating by the shear, whereas a
granular system under similar conditions has a genuine
steady state.~iii ! Equation~14! is only a lowest order~in g
and «! expression of a more general result~which is « de-
pendent! which follows from the~above! generalization of
the CE idea to inelastically colliding systems. All in all, na-
ive usage of the Burnett results, while yielding the correct
answer to lowest order, is not justified; a careful analysis of
the corresponding Boltzmann equation is required. The ratio

of the normal stresses increases with the mean free path
when all the other parameters are fixed. Notice that insteady
granular systems the temperature is not predetermined but it
is fixed by« and g. Substitution of the steady-state relation
betweenT and g in Eq. ~14! yields a normal stress ratio
which is a universal function of« alone. The result, to the
presently calculated order in perturbation theory, is

txx
tyy

'
110.522«

120.522«
. ~15!

The latter function tends to unity as«→0 and thus one may
erroneously conclude that the normal stress difference is a
feature of inelasticity. However, when«→0 andg is kept
fixed, it follows from Eq.~14! that the normal stress differ-
ence remains intact@the lowest order at which the inelasticity
influences the normal stress ratio isO~g2«!#. The reason for
the possible confusion is the fact that in thesteady~sheared!
state of a granular systemg2}« for a fixed value of the
~granular! temperature~a result of the balance between col-
lisional inelastic cooling and viscous heating!, hence, one
cannot separate the«→0 andg→0 limits in this case.

The unobservability of the normal stress difference in
simple molecular fluids can be appreciated by noting that
g2l 2/^u2&5O(10221) for air at 20 °C, atmospheric pressure
and g51 sec21. Only under extreme conditions~very cold
and strongly sheared dilute gases! one stands the chance of
observing a slight normal stress difference in simple molecu-
lar fluids. In granular fluids, however, this quantity isO~«!
and amenable to measurement.Thus the specific nature of
granular fluids, i.e., the fact that T}g2/« renders the Burnett
correction significant and observable in these systems; one
may regard this effect in granular fluids as a measurable
manifestation of the Burnett correction. At this point we
wish to mention again the Jenkins-Richman ansatz@9# of an
anisotropic Maxwellian distribution for a steady sheared
granular flow: in their theory~which compares favorably
with simulations! a steady-state shear flow was considered
and the resulting normal stress difference isO~«!. Their re-
sults for the numerical coefficients ‘‘a’’ and ‘‘ b’’ ~in our
notation! are close to ours@19#. The normal stress ratio pre-
dicted by Eq.~15! for e50.8, istxx/tyy'1.463. The numeri-
cal result of Walton and Braun@7# is 1.484 and that calcu-
lated by Jenkins and Richman is 1.439~in the dilute limit!.
The difference between the results of Jenkins and Richman
and our own is due to the fact that they use Enskog’s equa-
tion to obtain a closure while we have performed a system-
atic CE-like expansion~their theory corresponds to effec-
tively replacing the functionsFi j by constants!. At this point
it is worthwhile mentioning that normal stress differences are
known in polymeric systems, nontrivial molecular systems,
and in strongly sheared systems in general. As mentioned in
the above, the existence of a very weak normal stress differ-
ence in sheared simple molecular fluids, can be deduced
from the well known values of the Burnett coefficients for
such systems. However, as we have hopefully shown in the
above, the existence ofstrong normal stress differences in
simple granular systems is a subtle issue: unlike polymeric
systems these systems are isotropic on the molecular level
and the CE expansion for the corresponding Boltzmann
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equation cannot straightforwardly be read off the corre-
sponding CE expansion for elastic systems.

In summary, we have shown how one can perform a
Chapman-Enskog analysis of the Boltzmann equation corre-
sponding to granular systems. We carried it out to Burnett
order and discovered that this order is the source of the
~strong! normal stress differences observed in granular flows

~with corrections due to higher orders!. Since a similar~but
weak! effect exists in simple molecular fluids one may state
that the Burnett correction is a universal source of normal
stress differences and that granular fluids provide a measur-
able manifestation of this effect.
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